On Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential

نویسندگان

  • Gang Wu
  • Yimin Wei
چکیده

Krylov subspace methods for approximating the action of the matrix exponential exp(A) on a vector v are analyzed with A Hermitian and negative semidefinite. Our approach is based on approximating the exponential with the commonly employed diagonal Padé and Chebyshev rational functions, which yield a system of equations with a polynomial coefficient matrix. We derive optimality properties and error bounds for the convergence of a Galerkin-type approximation and of a computationally feasible and extensively used alternative. As complementary results, we theoretically justify the use of a popular a-posteriori error estimate, and we provide upper bounds for the components of the solution vector. Our theoretical and numerical results show that this methodology may provide an appropriate framework to devise new strategies such as more powerful acceleration schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Different Methods for Approximate Analysis of Bar Structures

In this paper, modified solutions were compared through utilizing three different approximate methods for bar structures. The modifications considered various changes in the initial design. To authors' best of knowledge, the studies have carried out on this matter so far are not broad enough and have considerred the simeltaneous variations of size, geometry and topology on the bar structures. I...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection∗

Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi met...

متن کامل

Signal detection Using Rational Function Curve Fitting

In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006